Decentralized Organic Waste Management with Small-scale Anaerobic Digesters – A Case Study of Pune, India

2018 International Solid Waste Association World Congress
24 October, 2018
Kuala Lumpur, Malaysia

Tom Frankiewicz, U.S. EPA
Nimmi Damodaran, Abt Associates
Sourabh Manuja, TERI
Overview

• Background on solid waste management in Pune
• Pune’s approach to diverting waste
• Benefits and challenges of biodigesters
• Leveraging Pune’s experiences with biodigesters
Pune Context

- 8th largest city of India (2nd largest in the state of Maharashtra)
- Population
 - 6 million in 2018
 - Projected to increase to nearly 8 million by 2030
Solid Waste Management in Pune

• Generation: 2,100 metric tons of municipal solid waste daily
• Composition:
 o 45-50% organic
 o 35-40% recyclable
 o Remainder is inert
• Collection:
 o 55% - door to door
 o 12% - gate collection (directly in small truck)
 o 30% - community bins
 o 3% - unauthorized disposal locations
• Key sources:
 o Households (around 69%), hotels and restaurants (about 11%) and markets and commercial establishments (around 4%).
Solid Waste Management Challenges

• Limited disposal capacity
 o Community opposition
 o Most of Uruli Devachi landfill closed
 o Open portion receives 600 tonnes per day
• Excessive waste transportation costs
• Failure of privately operated material recovery, composting, and RDF facilities
Multiple Diversion Strategies

• Pune has adopted a suite of technologies and options in recent years to address emerging waste emergency
• Current organic waste treatment facilities
 o 3 segregation facilities (25TPD, 50 TPD, and 50 TPD)
 o 1 centralized composting facility (200 TPD)
 o 13 decentralized composting facilities
 o 1 facility preprocessing organic waste for BioCNG (300 TPD)
 o 1 RDF and compost plant (300-350 TPD)
 o 26 decentralized biodigesters
Decentralized Biodigesters

- Network of 26 biodigesters
- Each processes approximately 5-10 tonnes of organic waste daily
- Technologies
 - Up-flow anaerobic sludge blanket technology
 - Conventional anaerobic digestion technology
- Some plants are operated by a private concessionaire that receives tipping fees paid by the municipality
- Contracts are for a period of five years for plants installed by the municipal corporation, and ten to fifteen years for plants installed by the private sector
Biodigester Benefits

• Reduced methane emissions (estimated by Pune Municipal Corporation as $180m^3$ of methane per day per 5 TPD plant)
• Biogas is used to generate electricity, which is used to power local street lighting
• Digestate is used as soil amendment to maintain local green spaces
• Reduced transportation costs by treating waste locally (estimated by PMC as Rs. 400 or about $6.00 per ton of waste)
• Reduced risk of unprocessed waste piling up due to a temporary failure of a single facility
Implementation Challenges

• Quality of the feedstock
 o Challenges with monitoring, reporting, and verification mechanisms to ensure high quality feedstock

• Operations
 o Dysfunctional scrubbers and inadequate maintenance

• Implications: frequent system down-time and low electricity output
 o E.g., electricity production at a five tpd plant using a 50 KVA generator operating less than 6 hours per day was 2.09 KWh on average - as observed in March 2018
Overcoming Challenges

• Focusing on improving operations and maintenance
• Developing an action plan for solid waste management under the Smart City initiative that employs integrated strategies to improve solid waste management in general
 o Promotes “smart” technologies to address urban challenges
 o Includes specific objectives and strategies for each aspect of the solid waste management cycle (e.g., using monitoring technologies for collection)
Sharing Pune’s Experiences

- Pune is participating in the Climate and Clean Air Coalition Municipal Solid Waste Initiative
- Waste Initiative working with regional implementer, TERI, to promote Pune’s achievements
- A number of other large and medium cities in India have conducted site visits to Pune and started to replicate its successful model
- TERI is identifying barriers and opportunities to extending the Pune model to other cities
Considerations for further research

• Is this a useful model?
• If so, what polices and practices were initial drivers for diversion technologies employed – and which have subsequently been successful?
• What are changes in waste flows since inception of program? Are there measureable changes in leachate and groundwater contamination?
• What information would be helpful to others in the network to replicate this approach?
Thank you! Questions?

Tom Frankiewicz
CCAC Waste Initiative Co-chair
U.S. Environmental Protection Agency
Frankiewicz.Thomas@epa.gov