ABC of Energy Efficiency – Concept, Approaches and Policies

Shaping the Discourse: Effective Energy Efficiency Storytelling

Prosanto Pal Senior Fellow Industrial Energy Efficiency Division TERI, New Delhi

July 5, 2023

Why energy efficiency

- Energy efficiency improvements are the cheapest and most effective way of reducing CO₂ emissions and mitigating climate change
- According to the IEA (International Energy Agency), improving energy efficiency must account for more than 50% of the measures needed to win the battle against global warming

ENERGY

AGRICULTURE

ENVIRONMENT

HABITAT

Energy efficiency has an attractive payback

Energy efficiency improvements required capital investment or manpower or both

Payback period = $\frac{Capital required}{Annual savings}$

Option	Payback, years
Solar	7-8
Wind power	10-12
Energy efficient equipment	2-5

CLIMATE

NUTRITION

ENERGY

AGRICULTURE

ENVIRONMENT

SECURITY

HABITAT

Energy Consumption in Industry

- Large energy-intensive industries like fertiliser, cement, pulp and paper, textiles, iron and steel, aluminum, chemicals
- Many energy intensive small scale industries like glass, ceramics, forging, foundry, brick
- Parallel existence of newer state-of-the-art plants and older technologically obsolete plants
- 20-25% energy conservation potential

٢

AGRICULTURE

ENERGY

Understanding of 'areas' and 'levels' of energy efficiency helps targeting

	Energy audits	R&D
	Area 1: Energy production and distribution (plant auxiliaries)	Area 2: Energy usage within processes
Level 1:Efficient operation of the existing plant (good housekeeping measures)	Better maintenance (rewinding) practices	Best operating practices in furnace
Level 2: Major improvements in the existing plant (retrofits and revamps)	Variable speed drive for electric motor	Improved furnace insulation
Level 3: New plant or process designs	New energy efficient electric motor	New energy efficient furnace

ENERGY AGRICULTURE ENVIRONMENT

HABITAT RESOURCE SECURITY

HEALTH

Approaches

- Training and awareness creation
- Energy audits and implementation of EE technologies and practices
- EE technology innovation

ENERGY

- Technology demonstration vs Technological capacity through Research, Development, Demonstration and Dissemination (RDD&D) initiatives
- Policies (financial concessions, regulation etc.)

Documentation and awareness generation

- Process documentation for policy makers and funding organisations
- Dos and don'ts for industry

ENERGY

AGRICULTURE

- Sharing of best practices through newsletters like SAMEEEKSHA
- Video films on energy efficient technologies and best operating practices
- Hands-on training programs for operators and supervisors

ENVIRONMENT

HABITAT

CLIMATE

SECURITY

Case Study: Energy audit of municipal water pumping installations in Accra, Ghana

ONMENT

- Energy audits of pump-sets installed in water pumping installations
- Energy of about 18% of electricity bill identified through adoption of measures like:
 - Power factor improvement
 - Replacement of inefficient pumps with new ones
 - Retrofitting of pump internals like impellers, sleeves etc.
 - Relaying of header pipe line
- Measures would result in energy saving of \$
 0.6 million with an investment of \$ 1.2 million
- Simple payback period is below 2 years

Technology characteristics of energyintensive SMEs

- Conventional technologies which have remained unchanged for decades
- Little R&D efforts
 - Underdeveloped support institutions and local service providers
 - Limited capacity to innovate

ENERGY

AGRICULTURE

ENVIRONMENT

HABITAT

SECURIT

RDD&D in SMEs

- Glass making is very energy intensive energy accounts for 40% of manufacturing cost
- Considerable potential to reduce energy consumption and carbon emissions by adoption of energy efficient furnaces

ENERGY

AGRICULTURE

ENVIRONMENT

HABITAT

Approach

- Involved international and local experts to develop (conduct R&D) on:
 - > Better furnace construction
 - Burner design
 - Recuperator design

ENERGY

 Demonstrated the energy efficient furnace in one SME

AGRICULTURE

ENVIRONMENT

HABITAT

Energy savings of 30-35% demonstrated

Conventional coal/NG fired Pot Furnace

Recuperative Natural Gas fired Pot Furnace

навітат

Disseminate

- Local service providers provided training
- Deployment
 - > 86 units have adopted the new technology; about 90% of the cluster
 - Cumulative energy savings of 100,000 toe and CO2 savings of 300,000 tones

Energy Efficiency Policies – Key Recent Initiatives

Energy Conservation Act (ECA), 2001

ENERGY

- Bureau of Energy Efficiency (BEE), under the Ministry of Power , is the nodal agency for implementation of ECA
- Modified in 2010 to provide legal mandate to PAT
- National Action Plan on Climate Change (NAPCC), 2008
 - Eight missions were set-up. National Mission for Enhanced Energy Efficiency (NMEEE) pertains to energy efficiency
 - Performance, Achieve, and Trade (PAT) mechanism was launched under the NMEEE in
 2008

Perform Achieve Trade (PAT) scheme – salient features

- PAT is an innovative, market-based trading scheme
- Aim is to improve energy efficiency in industries by trading in energy efficiency certificates in energy-intensive sectors
- Mandatory specific energy consumption targets for larger, energyintensive facilities (called Designated Consumers)
- Implemented in three phases-the first phase was from 2012-2015
- BEE is administering the PAT scheme
- Energy Efficiency Services Ltd (EESL) will administer the trading

Preparatory activities undertaken by BEE

- □ 5 years energy data from DCs collected though the notified format
- Baseline Energy Audits conducted in all DCs
- Data compiled & analyzed for arriving at baseline SEC
- PAT Consultation Document prepared
- Stakeholder workshops conducted with different Industry groups
- The methodology for M&V system, Issuance of ESCerts & Trading prepared

Thank You

