SCP Framework for Affordable and Climate Resilient Building Construction and Materials

Start up Research and Way Forward

November 30, 2016
TERI-SRC Bangalore
Acknowledgements

We are pleased to acknowledge the following people who have contributed to this project and would like to convey our deep gratitude to them for their valuable inputs, suggestions and investment of time, which has helped the research team in development of the project.

Building materials and Technology Promotion Council (BMTPC)
Human Settlement Management Institute (HSMI)-HUDCO
Ministry of Housing and Urban Poverty Alleviation (MoHUPA)
Central Building Research Institute (CBRI)
Indian Institute of Technology, Delhi
Indian Institute of Technology, Roorkee
Development Alternatives
SHiFT (Studio for Habitat Futures)
Anangpur Building Centre
SEEDS
University of Bhutan
Ministry of Works and Human Settlement, Bhutan
Engineering Dept., Govt. of Bhutan
Renewable Energy Dept., Govt. of Bhutan
Govt. of Bhutan - Climate Change Division
Kansal Building Blocks Pvt Ltd, Dehradun
SISMO, Manesar, Gurgaon
Indo Bhutan Construction Solutions (P) Ltd, Panipat, Haryana
Department of Policy Studies at TERI University

TERI, Bangalore Project Team

Principal Investigator: Ms Minni Sastry
Co-Principal Investigator: Mr Hara Kumar Varma

Team Members: Mr Kiriti Sahoo
 Mr Kiran Kumar
 Mr Bishal Goswami
 Ms Aparna Choudhary
 Mr Siva Rama Krishna Evani
 Ms Vini Halve
The challenge of construction sector

By 2030, it is expected that 40% of India’s population will be living in urban areas that shall contribute to 75% of India’s GDP. Construction industry contributes to about 7% of India’s GDP. Construction and related manufacturing activities contribute about 25% of nation’s carbon emissions.

Government of India, has unveiled sustainable development urban strategies for the next 2 decades. The challenge is about ensuring sustainable development while taking advantage of economic growth that results from rapid urbanization in the country.

In order to reduce or lower the impact of construction sector on environment, it is important that the sector identifies and adopts sustainable construction materials, techniques and practices which result in sustainable operation and production.

Improved energy and resource efficiency in buildings, infrastructure and manufacturing processes, using alternate sustainable materials have high potential in reducing the environment impact of construction sector.

Sustainable construction refers to the process of creating buildings and infrastructure that is responsible to the environment and resource efficient throughout its life cycle.
UNEPA
do
glo
al
Action on Sustainable Consumption and Production

One of the definitions of SCP as per UNEP publication is “The use of services and related products, which respond to basic needs and bring a better quality of life while minimising the use of natural resources and toxic materials as well as the emissions of waste and pollutants over the life cycle of the service or product so as not to jeopardise the needs of future generations”.

Sustainable Buildings and Construction (SBC) is a thematic area under the overarching programme. One of sub programme area under the SBC theme is to “Establish, promote, and enable conditions for sustainable building and construction policies”. Another very relevant programme area is to reduce climate impact and strengthen climate resilience of the building and construction sector. Through the support of this program, buildings can improve the social, economic and environmental performance of regions, cities and nations.

About the Project

The research project carried out encompasses the above programme areas in the context of affordable and social housing. Affordable housing built with climate resilient features is one of the priority concerns in South Asian region. Climate vulnerabilities such as Extreme hot/extreme cold days, floods, landslides and sea level rise are features that the future housing projects need to integrate. At the same time, depletion of natural resources for construction of built environment pose challenge for innovation of building materials based upon the concept of sustainable consumption and production. Hence, the project focused on, developing SCP framework for affordable and climate resilient building materials. In South Asia, the Himalayan region is highly prone to disasters due to geological reasons as well as the stress posed by a growing population and exploitation of natural resources. Rapid and unplanned growth of construction activities without following prescribed norms and guidelines adversely affects the fragile Himalayan region.

The process followed in the project, involved stakeholder engagements starting from household owners, architects, builders, Government departments and manufacturers of building materials who supply material for construction in the Himalayan regions, to understand the sustainability attributes of materials at production level and consumption level. This was followed by developing a framework for Sustainable Construction and Production of building materials, evaluating Sustainability Index of a few building materials and understanding the existing policy gaps in implementing sustainable, affordable and climate resilient construction in the Himalayan region of South Asia.
Main Objective

To develop a SCP framework for affordable and climate resilient building materials and technologies of the Himalayan Region in South Asia.

Specific Objectives

- Current practices of consumption and production of building materials in the Himalayan region.
- Inventory of building materials for wall, roofing, flooring and doors/windows.
- SCP Framework for building materials using multiple attributes under the main themes - affordability, eco-friendliness, climate resilience and social aspects.
- Analytical tool to calculate the sustainability index of materials.
- Sustainability index of few materials.
- Policy and institutional mechanisms, identify gaps if any and give recommendations.

Study Area

![Map of India](image)
Inventory of Building Materials formed after the study

<table>
<thead>
<tr>
<th>Wall</th>
<th>Roofing</th>
<th>Flooring</th>
<th>Door/Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stones</td>
<td>CGI sheet</td>
<td>Mud (with timber)</td>
<td>Timber</td>
</tr>
<tr>
<td>Brick</td>
<td>Slate (with timber)</td>
<td>Cement</td>
<td>PVC</td>
</tr>
<tr>
<td>Bajri</td>
<td>RCC</td>
<td>Mud</td>
<td>Aluminium Frame</td>
</tr>
<tr>
<td>AAC blocks</td>
<td>Ceramic tiles</td>
<td>Brick</td>
<td></td>
</tr>
<tr>
<td>Concrete core with EPS</td>
<td>Gypsum Board with light gauge steel</td>
<td>Stone</td>
<td></td>
</tr>
<tr>
<td>Fly ash lime bricks</td>
<td>Timber</td>
<td>RCC</td>
<td></td>
</tr>
<tr>
<td>Rubble filler blocks</td>
<td>Stone and mud</td>
<td>Ceramic tiles</td>
<td></td>
</tr>
<tr>
<td>Bamboocrete</td>
<td>Slate and mud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRC (Fibre Reinforced Concrete)</td>
<td>Hollow core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>Micro concrete roofing (MCR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slate</td>
<td>Cement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed earth stabilised block</td>
<td>Clay tile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollow concrete blocks</td>
<td>Bamboo mats</td>
<td>Fibre Cement Board</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Field Visits

Type Of Walling Materials Used

Type Of Roofing Material Used

Type Of Flooring Material Used
SCP Framework: List of attributes under the parameters- affordability, eco-friendliness, climate resilience and social aspects

<table>
<thead>
<tr>
<th>Affordability</th>
<th>CONSUMPTION</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material Cost</td>
<td>Production Cost</td>
</tr>
<tr>
<td></td>
<td>Maintenance cost</td>
<td>Energy Efficient</td>
</tr>
<tr>
<td></td>
<td>Cost of construction</td>
<td>Manufacturing Practices</td>
</tr>
<tr>
<td></td>
<td>Ease of construction</td>
<td>Supply chain management</td>
</tr>
<tr>
<td></td>
<td>Design Flexibility</td>
<td>Economies of Scale</td>
</tr>
<tr>
<td></td>
<td>Labour skill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed of construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material reduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restriction on number of floors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compatibility with support systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design efficiency</td>
<td></td>
</tr>
<tr>
<td>Eco-friendliness</td>
<td>Certified product</td>
<td>Manufacturing Process</td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency</td>
<td>Certification</td>
</tr>
<tr>
<td></td>
<td>Thermal comfort</td>
<td>Certified Product</td>
</tr>
<tr>
<td></td>
<td>Indoor air quality</td>
<td>Embodied Energy</td>
</tr>
<tr>
<td></td>
<td>Local availability</td>
<td>Authorised Raw Material</td>
</tr>
<tr>
<td></td>
<td>Water consumption</td>
<td>Extraction</td>
</tr>
<tr>
<td></td>
<td>Reusability</td>
<td>Recycled Content</td>
</tr>
<tr>
<td></td>
<td>Recyclability</td>
<td>Regional Availability</td>
</tr>
<tr>
<td></td>
<td>Construction waste management</td>
<td>Rapidly Renewable Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon Emission</td>
</tr>
<tr>
<td>Social Aspects</td>
<td>Social acceptance</td>
<td>Social acceptance</td>
</tr>
<tr>
<td></td>
<td>End user Friendliness</td>
<td>Work Environment</td>
</tr>
<tr>
<td>Climate resilience</td>
<td>Reduced Weight</td>
<td>Reduced Weight</td>
</tr>
<tr>
<td></td>
<td>Tensile Strength</td>
<td>Tensile Strength</td>
</tr>
<tr>
<td></td>
<td>Compressive Strength</td>
<td>Compressive Strength</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td>Moisture Resistance</td>
<td>Moisture Resistance</td>
</tr>
<tr>
<td></td>
<td>Fire Resistance</td>
<td>Fire Resistance</td>
</tr>
<tr>
<td></td>
<td>Thermal Capacity</td>
<td>Thermal Capacity</td>
</tr>
<tr>
<td></td>
<td>Thermal Conductivity</td>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td></td>
<td>Acoustic Performance</td>
<td>Acoustic Performance</td>
</tr>
<tr>
<td></td>
<td>Durability and life span</td>
<td>Durability and life span</td>
</tr>
</tbody>
</table>
Weightages of Parameters and Attributes

- **Affordability**
 - Material Cost
 - Time taken for...
 - Material Reduction
 - Design Efficiency
 - Production Cost
 - Cost of Construction
 - Maintenance Cost
 - Ease of construction
 - Design Flexibility
 - Labour Skill
 - No of floors
 - Compatibility with...
 - Energy Efficient...
 - Supply Chain...
 - Economies of Scale

- **Eco-friendliness**
 - Energy consumption
 - Water Consumption...
 - Water Consumption...
 - Reusability
 - Recyclability
 - Certified Product
 - Thermal Comfort
 - Indoor air quality
 - Local Availability
 - Construction Waste...
 - Manufacturing Process...
 - Authorised Raw...
 - Regional Availability
 - Rapidly Renewable...
 - Embodied Energy
 - Carbon Emission
 - Recycled Content
 - Work Environment
 - Social Acceptance
 - End User Friendliness

- **Social Aspects**

- **Climate Resilience**
 - Structural wt.
 - Compressive Strength
 - Density
 - Moisture absorption
 - Fire resistance
 - Thermal Conductivity
 - Durability and life span
 - Thermal capacity
 - Acoustic Performance
 - Tensile Strength
Way Forward

The project created a framework to calculate Sustainability Index of building materials based upon the SCP concept for Low Cost Climate Resilient construction in the Himalayan Regions of South Asia. The framework has been created with interventions of stakeholders from the specific study region. In order to replicate the proposed SCP framework for low cost climate resilient construction in other parts of World, Asia, India, it is required to carry out studies to understand the replicability and adaptability of the framework for different region specific building materials.

It is also important to integrate the SCP framework in the existing building regulations for on ground implementation of sustainable and climate resilient construction.

For wide scale replication and use of the concept of Sustainability Index of building materials based upon the concept of SCP, it is important to create tools for designers and decision makers, to assist in calculation of Sustainability Index of various building materials.

Along with the tool, it is also important to create study modules with academic institutes to integrate SCP framework, its concepts and calculations to increase capacity of young designers in selecting sustainable construction materials and techniques.