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Factors influencing climate

d Incident solar radiation - variation with latitude

A Closeness to large water bodies - distribution of land & water
O Mountain barriers

Q Altitude

O Ocean temperature and currents

d Land cover

Q Atmospheric composition



Interactions

Changes in the Atmosphere: Changes in the
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The non-linear interaction among the components leads to
climate variability at a range of spatial and temporal scales
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Causes (external or
anthropogenic forcing)

Review of Basics:
Climate System

Climate System Climate variations
(internal interactions) (internal responses)

Changes in Plate
tectonics

Changes in

Earth’s orbit
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Sun’s strength

Anthropogenic
Forcing due to
Humans

Added

warming by

human

intervention

Changes in
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Ice
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Ocean

The non-linear interaction among the components leads to
climate variability at a range of spatial and temporal scales



How do we quantify the response
of the climate?

« The response of the climate system to this

forcing agents is complicated by:
> feedbacks
» the non-linearity of many processes

> different response times of the different components to a
given perturbation

« The only means available to calculate the
response is by using numerical models of the
climate system.



What is a Model ?

“a simplified description, esp. a mathematical one, of a system

or process, to assist calculations and predictions”
- dictionary

How do we define a Climate Model ?

“A climate model is a mathematical representation of the physical

processes that determine climate”

Why do we need Climate Models ?

» To create an understanding of the climate processes.
» To create plausible-scenarios, reflecting the current state of
scientific understanding.

» To plan for the future.



The Climate Cube
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Climate model - an attempt to simulate many
processes that produce climate

The simulation is accomplished by describing
the climate system of basic physical laws.

Model is comprised of series of equations
expressing these laws.

Climate models can be slow and costly to use,
even on the faster computer, and the results
can only be approximations.

The objective is to understand the processes
and to predict the effects of changes and
interactions.



The processes of climate system interact with
each other, producing feedbacks, which in turn
involves great deal of computation to simulate.

The solutions start from some “initialized” state and
investigate the effects of changes In different
components of climate system.

Boundary conditions — solar radiation or SST — set
from obs. data, but since data itself aren’t that
complete, hence inherent uncertainty exists.

2 sets of simplifications
—Involving process

—Involving resolution of model in time and
space



Process simplification —

 Treating some processes Iin detail and

approximating others due to their
inadequate understanding or lack of
computer resources.

- E.g.- treating radiation process Iin detail,
but approximating the horizontal energy
flows associated with regional — scale
winds.

 These approximations may be approached
either by using available obs. data, some
empirical approaches, or through
simplifications of physical laws.



Time and space simplifications —

« Resolution of a model should be used
appropriately.

- If process involved is larger than model resolution,
finer resolutions for that model may be avoided.

 Temporal resolution or “timestep’ approach may
have constraints imposed by data, computational
ability and model design

 Process allowed to simulate for a certain time >
new conditions calculated - process repeated with
new values -> continues till conditions at the
required time have been established.



Components of Climate models

Radiation — input and absorption of solar radiation and

emission of infrared radiation handled.

Dynamics — horizontal movements of energy around the
globe (low to high lat.) and vertical movements

(convection etc.)

Surface processes — inclusion of land/ocean/ice and the
resultant change in albedo, emissivity and surface-

atmosphere energy interactions.

Resolution in both time and space — the time step of the

model and the horizontal and vertical scales resolved.



Framework for a Model
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Components of a weather/climate model

Changes in solar input

*

Changes in the atmosphere:
composition, chemical reaction
rates and circulation

H20, Np, Op, COp, O3 etc
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Concept diagram of climate modeling
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Numerical Solution: Time steps and Grid boxes

Schematic for Global
Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

~~~~~~

.....

All the physical processes occurring in the climate system are resolved at

individual grid and the coupling occurs at these grids. .. ...,


file://localhost/upload.wikimedia.org/wikipedia/commons/b/b1/Global_Climate_Model.png

Basic equations
General Circulation Model:

dV/dt+ fkx V+ V¢ =F, (horizontal momentum)

dT/dt - kTw/p = Q/c,, ~ (thermodynamic energy)
V-V +8w/8p =0, (mass continuity)
00/0p+RT/p=0, (hydrostatic equilibrium)
dg/dt = S,. | (water vapor mass continuity)

Harmless looking terms F, (), and S, = “physics”



Process of Model Simulation

Model develoment

Physical, chemical, biological principles
k\‘\“ Observations h Generation of model source code

Approximations, parameterizations
Observations

MNumerical resolution Model Simulation

Simulation Test of the validity

/7 of the model
Model P Results

Projections
T T and
analysis of mechanisms

Forcings Boundary conditions

N/

Observations h Supply of Initial and boundary

conditions

Source: Goosse et al 2010



Types of climate Models
1. Energy Balance Models (EBMs)

zero or one dimensional

2. Radiative Convective (RC) Models

one dimensional

3. Statistical Dynamical (SD) Models

two dimensional

4. Global Circulation Models (GCMs)

Three dimensional



Energy Balance Models (EBMs)

Zero or one-dimensional models predicting the variation
of the surface (strictly sea level) temperature as a
function of the energy balance of the earth with latitude.

Used to investigate sensitivity of climate systems to
external changes and interpret results from complex
models.

Radiative-Convective climate Models

Are 1-D with respect to altitude and compute the vertical
(usually globally averaged) temperature profile by
explicit modelling of radiative processes and ‘convective
adjustment’ which re-establishes a predetermined lapse
rate.

RC models study the effects of changing atmospheric
composition and investigate likely relative influences of
different external and internal forcings.



Statistical Dynamical (SD) Models

Are 2-D models that deal explicitly with surface processes
and dynamics in a zonally averaged framework and have
vertically resolved atmosphere.

SD models used to make simulations of the chemistry of
stratosphere and mesosphere.

Global Circulation Models (GCMs)

Where the 3-dimensional nature of the atmosphere and/or
ocean is incorporated. Vertical resolution is generally finer
than horizontal resolution. Includes AGCM, OGCM and the
coupled AOGCM.

The resulting set of coupled non-linear equations are
solved at each grid point using numerical techniques that
use time step approach.

Atmospheric grid points ~ 2°-5° with time steps ~ 20-30
min. Vertical resolution ~ 6-50 levels (20 being typical).



Development of climate models

The development of climate models, past, present and future
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Improvements in Grid
resolution

« The evaluation of the Climate models
has become an essential pre-
requisite to understand the Earth’s
climate system

* A Model Inter-comparison Project is
an approach to model verification -
and they are part of community g
analysis and verification/activity. - A

o
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B ¥ T
B
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« Intergovernmental Panel for Climate
Change has started its MIP programs
with Atmospheric Models in 1995 till
today with CMIP (Coupled Ocean
Atmospheric Models).




Computational Capabilities and Needs

Improvements in computational capabilities have paved the
developments of atmospheric simulation capabilities
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As an example, a 10-year global atmospheric simulation using a
state-of-art GCM can require several tens of hours of supercomputer
time approx 10° floating operations per second (1 Giga Flops)



What can we expect to simulate?

1. Basic features of the general circulation of the
atmosphere (e.g. Hadley cell, mid-latitude jets)

2. Climatology (based on at least 5-10 years) e.q.
seasonal and monthly means.

3. Climate variability, e.g. behaviour of dominant
modes of inter-annual variability such as ENSO,
NAO.

4. Statistics of sub-seasonal variability e.g. monsoon
active/break cycles, storm-track characteristics



What can we not expect to simulate?

1. The actual weather observed at individual
locations, at specific times.

2. A 100 % correlation with observations due to
inherent climate uncertainty. Hence, ensemble
approach is utilized.

3. Individual weather events. But climatological
statistics able to provide future frequency and
magnitude of such events.



Simulations using a Global Coupled
Model:

Test run results from Community Climate System Model Verslon Test run results from Cormmunity Climate System Model Verslon 3

Rainfall (in mm//day} variation from June—September Temperature (in * C) variation from June-December

Time: 04JUN1802 Time: 04JUN1902
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The simulations of a model should be comparable to
the observations, this step is called as Validation of
the model outputs

Source: TERI (2011)



Typical data used to evaluate climate models

Re-analyses of the
global circulation
(ERA40, NCEP)

Synthesised climatologies
e.g. precipitation

Satellite
observations

In situ
measurements




Need for Regional Climate Modeling Tool
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Most of AR4 coupled models even with high spatial resolution of 110km x 110km

were unable to represent the mean monsoon pattern similar to observations.



Downscaling from GCMs

- Downscaling is a way to obtain higher spatial
resolution output based on GCMs.

- Options include:

» Combine low-resolution monthly GCM output
with high-resolution observations

» Use statistical downscaling
> Easier to apply

»Assumes fixed relationships across spatial
scales

> Use regional climate models (RCMs)
»High resolution
»Capture more complexity
»Limited applications
»Computationally very demanding



Global

——
Input

Downscaling

Dynamical

Downscaling

Regional Output

Global

S —

RC

Input

GCM




Regional Climate Models (RCMs)

These are high resolution models that are
“nested” within GCMs

A common grid resolution is 50 km or lesser.

RCMs are run with boundary conditions from
GCMs

They give much higher resolution output than
GCMs

Hence, much greater sensitivity to smaller scale
factors such as mountains, lakes



Regional Modelling Product

IMD JJA rainfall mean of 50 years (1961—2007) PRECIS JJA rainfall mean of 30 years (1960—1990)

30N
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70E 80E 90E
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Source: TERI (2011)

RCM is able to capture the major features but overestimates the rainfall in

few regions.



Lack of observations: poor model result

Observed rainfall climatology compared with IPRC_RegCM over
peninsular India
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Reanalysis — temporal variability of atmospheric states and internal variability
preserved — yet, results are not encouraging

Monsoon region — lack of 3-D moisture observations — severe constraint
Annamalai, 2012



Uncertainties in Observation and Models
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Annual Global Combined Land and Sea Temperature
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Observed change in average surface temperature 1901—-2012

Warming is
Unequivocal

(IPCC 2013, Fig. SPM.1b)
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Warming in the climate system is unequivocal
IPCC, 2013, AR5 WG1



OBSERVATIONAL EVIDENCES

CRU 1901 2010 CRIJ 1951 2010

Precipitation
show varied
trends

Different
observations
data show
the
variability

-100 -50 -25 -10 -5 25 0 2.5 5 10 25 50 100
Trend (mm yr”' per decade)

IPCC, 2013, AR5 WG1



Multi-model Simulation of Heat Wave Changes : . : :
2 Multi-model Simulation of Changes in Dry Days
Years 2080-2099 Minus Years 1980-1999 (middle emissions scenario) Vers 2000200 Minus Years 1980.1999 {middle emissions scefiaric)
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(a) Cold
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All India Mean Annual Temperature Anomalies
(1901-2007) (Base: 1961-1990)
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Rainfall (% Departure)

20 All India Rainfall (IITM ) and 31 Year Running Mean :
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All-India monsoon season rainfall time series shows NO long term trends. It is marked by
large year to year variations. There is a tendency of occurrence of more droughts in some

epochs (for example, 1901-1930, 1961-1990).
Rajeevan, 2013



Regional Rainfall Trends
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Rainfall Extremes and Trends for 1951-
2004
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PROJECTIONS



RCP 2.6 RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)
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Increase of global mean surface temperatures for 2081-2100
relative to 1986—2005 is projected to likely be in the ranges derived
from the concentration driven CMIP5 model simulations, that is,
0.3°C to 1.7°C (RCP2.6), 1.1°C to 2.6°C (RCP4.5), 1.4°C t0 3.1°C
(RCP6.0), 2.6°C to0 4.8°C (RCP8.5).
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b) max. 5 day precip _RCP8.5: 2081-2100 S. Asia pI‘OjECtS
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Projections for Tropical cyclones

SRES scenario A1B.
Periods: 1961-90 (20" cent.) and 2071-2100 (215 cent.) o
Experiments from. Muller and Roeckner (2006) 80

Difference in tropical easterly wave and cyclone statistics for 850 RV, between the 21C and 20C
periods (21C — 20C), averaged over the three ensemble members before differencing. Mean
intensity differences are only plotted where the track density is greater than 0.5 per month per unit
area.

Source: Bengtsson et al. (2006) using TRACK



India temperature change (°C)
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But how good are the models?

CRU Temp for 1980s (5 Model Ensemble Temp for 1980s °C
Avg = 23.31 Avg = 22.95
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RCP 6.0 RCP 4.5 RCP 2.6

RCP 8.5

Clear indication of Warming
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Projected changes in daily maximum temperature
and daily rainfall
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Cyclone Phailin in India: Early warning
and timely actions saved lives

Forecast on Cyclone Phailin was

"more or less" accurate: IMD

PFTI Oct13, 2013, 02.10PM IST

PM’s address at 101st Indian Science Congress in Jammu

“Our advances in meteorology were evident during the recent cyclone in
Odisha, when we received accurate forecasts of the landfall point that were
more accurate than the forecasts of well known international bodies. Our
decision to set up a new Ministry of Earth Sciences following the Indian Ocean
Tsunami in 2004 and to invest in world-class tsunami forewarning systems in
2007 has been amply rewarded. We now have the ability to issue alerts within
13 minutes of a tsunami-genic event. This has established India’s scientific

leadership in the Indian Ocean region.

| would also like to see continuous improvement in our monsoon prediction

capability through the recently launched Monsoon Mission so that we avert Source-IMD

the kind of calamities that we saw in Uttarakhand last year. “



Climate
Everyone's business

The process behind the Fifth Assessment Report (AR5) of the
UN's Intergovernmental Panel on Climate Change (IPCC)
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