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How should we tackle information overload? Two “basic
philosophies”:

1. Build high-quality tools for searching an unstructured document
base, such as the Web . This is the answer from text search .

2. Build high-quality tools for building structure into an
unstructured document base. This is the answer from
automated text classification (ATC).

In this talk we will deal with approach (2), thus discussing how ATC
can support the creation of digital libraries.
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ATC is the discipline concerned with building text classifiers , i.e.
tools that automatically “classify” textual documents into a finite set
of m predefined classes ( classification scheme ). E.g.

• filing newspaper articles under thematic pages (e.g. HomeNews,
Politics, Economy, Lifestyles, Sports);

• filing “classified ads” into classes (e.g. CarsForSale, RealEstate,
Personals, . . . );

• filtering unsuitable content (e.g. deciding between Pornography

and (not Pornography)) or junk mail (Spam vs. (not Spam));

• detecting semantic orientation (e.g. ThumbsUp vs. ThumbsDown).
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• Historically, the most important application of ATC is
automated document indexing with controlled vocabularies ,

i.e. classifying documents under classes (or “subject codes”, or
“descriptors”, . . . ) from e.g.

– the Library of Congress Cataloging Scheme;

– Dewey Decimal System;

– ACM Classification Scheme.

• Typically, this is a multilabel task, i.e. the same document may
be filed into any number of classes. This is implemented by
performing m binary classification tasks, i.e. deciding between ci

and (not ci) for 1 ≤ i ≤ m.

• Automated document indexing with controlled vocabularies is a
form of automated metadata generation .
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A binary classifier for class c, i.e. one that decides between c and
(not c)

• is built automatically, by machine learning techniques, from a
“training” set of documents preclassified under c and (not c);

• is tested by comparing its decisions with the human decisions
encoded in a “test” set of documents preclassified under c and
(not c).

Various ML techniques can be used in ATC; e.g. decision trees,
probabilistic (Bayesian) classifiers, neural networks, boosting,
support vector machines, etc.
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• CompCat is an ongoing, internally funded project at ISTI-CNR
for building a text classifier of scientific articles in the computer
science domain.

• Main specifications:

– The classes are the ones from the ACM Classification Scheme
(version of 1998);

– The classifier should be interactive , i.e. should suggest to
the author of the document a list of classes ranked according
to their estimated appropriateness for the document;

– Main goal is enabling authors to annotate their own articles,
thus avoiding the need for a specialized librarian.
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Characteristics of this problem domain:

• the classification scheme has a tree structure;

• documents are to be classified into the “leaf” nodes of the tree
only;

• there are thousands of classes, and many leaf classes may thus
contain very few training documents.

The training and test sets are years from 1998 onwards of the ACM
Digital Library.
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“Trivial” solution to the problem: for each (internal of leaf) class c,
train a binary classifier that decides between c and (not c).

Problems with this solution:

• inefficiency : since a document may belong to multiple classes,
this means invoking thousands of classifiers for each document.

• ineffectiveness : the information provided by the hierarchical
structure of the classification scheme is not exploited.
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• “Standard” text classification techniques assume that no relation
of dependency is defined among the classes belonging to the
classification scheme.

• However, many classification schemes have a hierarchical
structure defined on them. Exploiting the relationships of
dependence (e.g. “more general than”, “more specific than”,
“sibling of”, etc.) between the classes in the classification task
may bring about higher effectiveness and higher efficiency.

• The goal of the CompCat project is to boost the effectiveness of
classification by leveraging on the hierarchical structure of
classes.
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• There are three main intuitions that have been used in tackling
the hierarchical nature of the set of classes:

– Early pruning

– Local selection of negative examples

– Ancestor-based improvement of parameter estimation

• These intuitions are not mutually exclusive, and can be
combined.
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2.1. Early pruning

One may “greedily” select one or more children c1, . . . , ck of an
internal node ci, “prune” all the subtrees rooted in the other
children, and recursively process the subtrees rooted in c1, . . . , ck.

• Pros: we get an exponentially smaller set of classification
problems

• Cons: a misclassification early up in the tree cannot be recovered.
To make up for this, “soft” pruning should be enforced.
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2.2. Local selection of negative examples

• The hierarchical structure may be helpful in selecting better
negative examples for each class ci, i.e. choosing the negatives of
ci that belong to classes “close” to ci ( quasi-positives ). These
are much more helpful in learning an effective classifier than
“generic” negatives.

• Advantages:

– higher effectiveness, since the classifier can be more focused
on capturing the fine-grained distinctions among closely
related classes;

– higher efficiency, since (a) the number of training documents is
much smaller and (b) only the terms that appear either in the
positives or in the quasi-positives of ci need to be considered.
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2.3. Ancestor-Based Improvement of Parameter Estimation

• The principle of shrinkage is to obtain, in a probabilistic
classification context, better estimates θik = Pr(tk|ci) for a leaf
class ci than the ones obtained by ML, since ML may yield
unreliable estimates if ci is an infrequent class.

• Shrinkage obtains a better estimate of Pr(tk|ci) by interpolating
the ML estimate of Pr(tk|ci) with the ML estimates for tk

obtained for its ancestors. This trades specificity (which is
typical of nodes deep in the hierarchy) for robustness (which is
typical of nodes close to the root).

• [McCallum+98] shows that this can bring about significant
improvements in effectiveness.
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• In CompCat we apply these three insights in a novel way, i.e. we

1. Discard the naturally occurring hierarchy (ACM Classification
Scheme);

2. Generate an artificial hierarchy by means of a hierarchical
agglomerative clustering technique applied to leaf classes;

3. Use this latter hierarchy instead of the naturally occurring
one for learning the classifiers.

• This apparently counterintuitive idea relies on the hypothesis
that, while naturally occurring hierarchical structures are
advantageous for human understanding, a statistical classification
algorithm can profit more from those generated by a statistical
clustering algorithm.
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• The “user experience” will not be affected by this, since the
artificially obtained hierarchy will only be used by the classifier;
the user will continue to “see” the original hierarchy only.

• For this to happen, the clustering engine should “respect” the
integrity of the leaf classes; i.e. the leaf classes of the original
hierarchy must be all and the only leaf classes of the artificial
hierarchy. For this to happen

1. We generate a standard binary classifier for each class

2. We apply the clustering algorithm not to the training
documents, but to the classifiers, since we consider them
“representatives” of the classes.
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4. Conclusion

• The CompCat project is still ongoing: stay tuned . . .

• Its central idea is

Give hierarchies generated by humans to humans,
give hierarchies generated by machines to
machines.

• If this principle proves successful, this may well revolutionize the
way we conceive classification, since it can be instantiated with

– any “flat” text classification technique

– any technique for exploiting the hierarchical structure in
classification

– any hierarchical agglomerative clustering technique


