Indian Technical Economic Cooperation (ITEC) Programme and Special Commonwealth African Assistance Plan (SCAAP) Programme of the Ministry of External Affairs

> 3rd Training Programme on Applications of Biotechnology and its Regulation 4 August – 21 August 2009 (Venue – Gual Pahari)

> > Organized by

The Energy and Resources Institute Habitat Place, Lodhi Road New Delhi – 110 003, India

Programme Schedule

Tuesday, 4 August	2009, (Gual Pahari)
10.00 - 10:40	Welcome address and Opening remarks by Ms. Swati Ganeshan
10.40 - 10.50	TERI Multimedia Presentation
10.50 - 11.00	Round of introduction (Tea to be served inside)
11.00 - 11.20	Overview of the 3-week long program, Program Coordinator (Dr Vibha
	Dhawan)
11.20 - 1.00	Lecture 1
	General overview: What is Biotechnology? (Dr. Neetika Walia)
1.00 - 2.00	Lunch break
2.00 - 3.30	Lecture 2
	Achieving food and nutritional security
	A brief presentation on the key challenges faced by humanity today in
	ensuring availability of food to large population, especially in Asian and
	African continents where the challenge of malnutrition is greater. Role of
	biotechnology in this scenario would be discussed. The lecture would
	entail problems associated with economic status, sanitation and health
	issues especially in relation to malnutrition. (Dr Nidhi P Chanana)
3.30 - 4.00	Tea break
4.00 - 5.30	Lecture 3
	Identification of superior germplasm: Trees
	This session would highlight various parameters taken into consideration
	while marking a candidate plus tree (CPT). The path of further selection
	of CPT to elite would also be discussed. (Dr P P Bhojvaid)
	ust 2009, Plant Tissue culture (Gual Pahari)
10.00 - 11.30	Lecture 4
	Overview of plant tissue culture technology
	The tissue culture technology evolved gradually. Who were the pioneer
	workers? How did the technology developed? What are the infrastructure
	and laboratory requirements for carrying out tissue culture work? The
	broad technology, its applications and limitations will also be discussed. (Dr. Sanjay Saxena)
11.30 - 12.00	Tea Break
Shoot Multiplication	1
12.00 - 1.30	Lecture 5
	Shoot multiplication
	Theoretically, each plant cell is capable of producing a complete plantlet.
	There are three methods by which plants can be regenerated/ multiplied,
	viz., somatic embryogenesis, organogenesis and axillary branching
	method. Each of the three procedures has different requirements for
1.20. 2.20	induction which shall be discussed in this session. (Dr. Sanjay Saxena)
1.30 -2.30	Lunch

2.30 - 4.00	Lecture 6
	Shoot elongation and in vitro rooting of the developed shoots
	At shoot multiplication stage, the emphasis is on getting maximal clonal
	shoots. In certain cases, the shoots get stunted and need to be treated so
	that they attain certain height before they can be put for rooting. The
	elongated shoots can be treated as micro-cuttings and by changing the
	growth regulators, can be made to root through their basal cut ends. (Dr
	Vibha Dhawan)
4.00 - 4.30	Tea Break
4.30 - 5.30	Lecture 7
	In vivo rooting of micro-shoots and acclimatization of the tissue
	cultured plants
	Tissue culture is a relatively expensive process and apart from media and
	manpower cost, energy cost for maintaining cultures is very high.
	Therefore, attempts are made to treat in vitro formed shoots as cuttings
	and root them under in vivo conditions. Since the plants developed inside
	a culture vessel are very different from the plants growing naturally in
	terms of anatomy, physiology, etc, they need to develop the desired
	characteristics and change their mode of nutrition from heterotrophic to
	autotrophic. Various aspects of hardening (gradual acclimatization of
	tissue cultured plants to field conditions) would be discussed in this
	session. (Dr. Vibha Dhawan)
Thursday, 6 August	2009 Commercial Tissue Culture
10:00 - 11:30	Lecture 8
	Commercial tissue culture
	Commercial production of tissue culture plants is influenced by several
	factors. This session will be dedicated to ponder over on all those factors.
	The current status of tissue culture at global level shall also be discussed.
	(Dr. Vibha Dhawan)
11.30 - 12.00	Tea Break
12.00 - 1.30	Lecture 9
	Other aspects of plant tissue culture
	Besides, micropropagation, tissue culture has several other applications
	like protoplast culture, secondary metabolite production, anther culture,
	etc. Each of the applications shall be discussed in detail in this section.
	(Dr. Nidhi Chanana)
1.30 - 2.30	Lunch
2.30 - 5.30	
	Visit to Gual Pahari (MTP and Mycorrhizal Facilities)

Friday, 7 August	t 2009,
10.00-11.30	Lecture 10
	Molecular Markers and DNA Fingerprinting for Documentation of
	Plant Genetic Resources
	Until 1980's, the plant populations were largely characterised on the basis
	of their phenotypes. In order to differentiate individuals as being similar or dissimilar; isozymes and other biochemical markers were used as character states to quantify polymorphisms. However, the use of DNA based markers synchronising with the discovery of RFLP markers, completely revolutionised the way population genetic studies and molecular mapping were conducted. It was established that each individual has a unique DNA profile as unique as the fingerprints of human beings. DNA profiling/fingerprinting, hence, became the preferred method for analysing genomes. The current session will provide a historical perspective on the how several generations of molecular markers, viz. hybridisation based followed by PCR based markers were generated and utilized for scanning for mutations in the genome. RFLP, RAPD and AFLP among other marker techniques will be discussed. Use of SNPs genotyping platform, the third generation markers shall also be
	discussed. (Dr Anandita Singh)
11.30-12.00	Tea Break
12.00-1.30	Lecture 11
	Molecular Breeding
	Discovery of molecular markers has caused a major shift in breeding methodology based on molecular breeding techniques. Issues such as markers using candidate gene based approach, increased efficiency in application and DNA markers, new strategies for effective molecular breeding including assessment mapping to identify new molecular markers; an integrated gene and genomic system in bioinformatics etc. will be discussed. (Dr Shashi B Tripathi)
1.30-2.30	Lunch
2.30 - 4.00	Lecture 12 Biofuels: from concept to reality The sky rocketing prices of the fossil fuels coupled with environmental and health concerns, have raised interest in the renewable sources of energy. The trees can be harvested every 10 years and used for producing ethanol, which can than be used as petroleum substitution. Jatropha curcus is being researched up on for their potential and large scale plantation specially in the developing part of the world such as India, Malaysia and Africa. In this session, discussion will be held potential of
4 00 4 20	these crops to meet part of energy requirements. (Dr Alok Adholeya)
4.00-4.30	Tea Break

4.30 - 5.30	Lecture 13
	Treating pesticide contaminated sites
	"Increasingly, people in developed and developing countries have
	realized that the extensive use of chemical pesticides, which are used to
	keep crops healthy, has led to the contamination of the soil, crops and the
	resulting food products and drinks. Pesticide residues accumulate in
	agricultural land and can remain active for up to 30-50 years. With the
	advent of biotechnological intervention, there have been extensive
	research programme going on to degrade the pesticide contaminants in
	soil by microbes. Microbial consortia are in the process of development to
	remediate the pesticide residues in agricultural lands to regain them fit for
	organic farming whose produce will be free from any contaminants". (Dr
	Priyangshu Sharma)
Saturday, 8 Augu	
10.00 - 11.30	Lecture
11.30 - 12.00	Tea Break
12.00-1.30	Lecture
1.30 - 2.30	Lunch
2.30 - 4.00	Lecture 14
	Biofertilizer production
	More than 150 years of over cultivation with synthetic fertilizers and
	pesticides has left our soils degraded, polluted and less productive. The
	judicious use of nature's own biofertilizers by their biotechnological
	applications appears to be a suitable answer to this problem. Biofertilizers
	include environment-friendly fertilizers with organisms such as:
	Rhizobium, Azotobacter, mycorrhizal fungi, phosphorus solubilizing
	bacteria (PSB) and blue-green algae. The lecture will address the methods
4.00 - 4.30	and the issues related to their production. (Dr Reena Singh) <i>Tea Break</i>
4.30 - 5.30	Lecture 15 Disfortilizza and institutions & motortial
	Biofertilizer application, limitations & potential
	There are different ways of applying biofertilizer, which include seed
	treatment, seedling root dip, soil treatment etc. and will be dealt in the lecture. (Dr. Reena Singh)
Sunday 9 August	2009 : Local visit
Monday, 10 Augu	ist 2009
10.00 - 11.30	Lecture 16
	Genetic engineering of crops
	Development in plant science has now made it possible to transfer a
	specific portion of DNA to the genome of higher plant. These foreign
	DNA integrates in the genome of other organism, expresses itself and
	replicates just as any other part of the genome. This has offered enormous

	opportunities in terms of introducing traits, which did not exist in those
	species. This session will largely discuss on opportunities and concerns
11.20 12.00	about technology. (Dr. Vibha Dhawan)
11.30 - 12.00	Tea Break
12.00 - 1.30	Lecture 17
	Different methods of producing transgenics crops
	There are different methods of producing transgenic crops such as use of
	a soil-dwelling bacteria (Agrobacterium) which has the ability to integrate
	its DNA with the host plant DNA. These technologies and their
	applications and constraints will be discussed. (Dr Sanjay Saxena)
1.30 - 2.30	Lunch
2.30 - 4.00	Lecture 18
	Important traits for transgenic production
	Research in transgenic production in the developed part of the world
	focused on traits such as herbicide tolerance, insect resistance, increased
	shelf life and virus resistance. In this session the transgenic traits and their
	resistance in developing world will be analysed. The need of developing
	countries including Africa and other traits which are more relevant to
	their countries will be brought out in this session. (Dr Nidhi P Chanana)
4.00 - 4.30	Tea Break
4.30 - 5.30	Lecture 19
	Crops presently being attempted for transgenic production The
	important crops for which transgenes are produced are Soybean, Corn,
	Cotton, Canola, Squash, and papaya. Research is being attempted by
	many sectors in the developing part of the world especially on crops,
	which are relevant to them. Studies on commercial release of other crops
	especially in developing world will also be discussed in this session. (Dr
	Nidhi P Chanana)
Tuesday 11 Augu	ist 2009
10.00 - 11.30	Lecture 20
10.00 11.50	Scenario in developing countries with special emphasis on
	commercialised crop
	- Bt cotton – a case study
	- Bt corn
	In the Asia Pacific region, India and China have commercialised fibre
	crop i.e. Cotton. In so far as Food crops are concerned, transgenic corn in
	Philippines have been commercialised. The release of these two crops
	may serve as a future guide for commercialisation of other crops. These
	two will be presented as case studies. Discussions will center around
	importance of liasoning during the course of commercialisation. (Dr
	Vibha Dhawan)
11.30 - 12.00	Tea Break
11.50 - 12.00	

12.00 - 1.30	Lecture 21
	Environmental and biosafety issues in modern biotechnology
	Transgenic crops have enormous potential in terms of improving
	nutritional quality of crops and reducing use of insecticides/pesticides by
	introducing resistant genes. However the technology must be managed
	responsibly as irresponsible use of genes, especially for resistance to
	insecticides may lead to development of super varieties of insecticides
	which will be difficult to control by known pesticides. Capacity building
	at different stages and awareness about various regulations is a pre-
	requisite. Various issues related with the environment and biosafety will
	be discussed in this session. (Dr Vibha Dhawan)
1.30 - 2.30	Lunch Break
2.30 - 4.00	Lecture 22
4.00 - 4.30	Tea Break
4.30 - 5.30	Lecture 23
	Detailed regulatory guidelines and protocols for transgenic crops; food
	and feed scenario
	India had initiated formulation of legislation and guidelines for regulation
	of GMOs and related products much before CBD (Convention on
	Biodiversity) and BSP (Biosafety Protocol) were put in place. The
	Environment Protection Act and 1989 Rules for GMOs framed by MoEF
	would be covered in this session. The existing mechanism pertaining to
	regulatory procedures leading to approvals will be critically examined.
	Additionally, the session will cover the existing scenario in India in the
	area of regulation of GM food and feed products. (Dr K K Tripathi)
Wednesday, 12 A	ugust 2009
10.00 - 11.30	Lecture 24
	Recent Changes in patent laws in context of biotechnology
	The core intellectual property protection in the biotechnology industry is the
	patent law. The session examines the basic tenets of patent law and provides an
	in-depth insight into special problems associated with biotechnology related
	patents. This session will cover international experiences in biotechnology
	patents, exemptions, biotechnology related patent prosecution and enforcement.
	The session will also cover the complex world of patents in India. The session
	starts with regulatory and policy issues in biotechnological innovations in India
	followed by a critical examination of the recently enacted Patents (Amendment)
	Act, 2005, and the parent Patents Act of 1970. The session will focus mainly on
	patent issues including the patentability of living organisms, human-beings,
	animals and plants. It will also address the implications of patenting such
	biological material as nucleic acids including genes, regulatory elements and
11 20 12 00	ESTs (Expressed Sequence Tags). (Mr M V Shiju)
11.30-12.00	Tea Break

12.00 - 1.30	Lecture 25
	Functional Genomics and Bioinformatics
	Biologists are witnessing a paradigm shift in the way they identify
	biological problems and resolve them. On one hand, a colossus of
	sequence data is being generated through various genome sequencing
	projects. On the other hand, wide range use of computational biological
	methods and statistics has become central to interpretive science.
	Simultaneously, tools and techniques have been developed that allow
	studying genome at a global scale and a high-throughput manner. All
	these advances have lead to the genesis of "Functional Genomics", relates
	to application of genome wide, high throughput experimental approaches
	that allow assigning function to the DNA sequences. Bio-informatics is a
	very important functional genomics tool. The current session will provide
	an introduction to this frontier area of research. (Dr. Pankaj Khurana)
1.30 - 2.30	Lunch Break
2.30 4.00	Lecture No. 26
2.20 1.00	Biopesticide production, application and limitation
	Biopesticides are emerging as alternative to synthetic pesticides for safer
	food production. However, the share of biopesticides in the market is
	slightly above 2%. In this session, issues related to the low share of
	biopesticides and to enhance their utilization will be discussed. This will
	be followed by field visit to the institute / industry dealing with
	biopesticides regulation / production. (Dr Nutan Kaushik)
4.00 - 4.30	Tea Break
4.30 - 5.30	Lecture No. 27
4.50 - 5.50	Biopesticides and regulatory issues (Dr Nutan Kaushik)
Thursday 13 Aug	
10.00 - 11.30	Lecture No. 28
	Socio-economic and bio-ethical issues / public awareness and
	participation
	Modern biotechnological advances have wider implications on socio-
	economic issues. The impact of biotechnology on society constitutes the
	subject matter of the current session. Associated ethical issues in
	biotechnology relating to transparency and scientific validation of
	regulatory procedures and other areas concerning research priorities and
	ownership issues shall be discussed in detail. Furthermore, the importance
	of promoting public awareness through developing effective
	communication strategies and dissemination of scientific information in
	common language would be covered. (Dr S R Rao)
11.30- 12.00	Tea Break
12.00 - 1.30	Lecture No. 29
	Biosafety and trade related issues
	This session will bring out the inter-linkages of the trade practices in
	Agricultural products, both food and seed trade, the uniqueness of agro-
	biotech products in terms of environment and health risks and the

	regulatory concerns. This will introduce the participants to the legal and
	administrative arrangements in regulating the trade practices in a given
	set of infrastructure. It involves issues like labelling of products,
	consumer choice, product segregation, monitoring and the compliance
	cost. The special focus will be on the market conditions in India as
	compared to those in developed countries and the consequent regulatory
	challenges. Discussions on market conditions in other countries and
	scenarios in the neighbouring states will be initiated to explore the
	strategy to be carried out towards regional harmonization. (Dr Sachin
	Chaturvedi)
1.30 – 2.30	Lunch
14-16 August 2009: Visit to Mukteshwar (Till 16 th Night)	
17 August 2009	Visit to Pant Nagar University (Staying at University for 17 th Night)
18 August 2009	Morning – Departing for Delhi
19 August 2009	Visit to Agra
20 August 2009	Visit to IHC and Visit to IARI/NBPGR (Visit to National Phytotron
	Facilities)
21 August 2009	Visit to TERI University and Valedictory Session at TERI University